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The structure of the Michael adducts of ascorbic acid (AA) and AA-6-palmitate with acrolein can be unam-
biguously determined by using '*C-nmr solid state spectroscopy.

J. Heterocyclic Chem., 29, 1225 (1992).

During the last three decades some attention was
directed towards the derivatization of ascorbic acid [2].
Jackson and Jones [3] were the first to observe C2-alkyla-
tions besides the expected 03-benzylation in the reaction
of ascorbic acid with benzyl chloride, which underlined
the ambident character of the vitamin towards nucleo-
philic reagents. More recently Fodor et al. [4] reported the
Michael reaction of «,B-unsaturated aldehydes and ke-
tones to the C2-position of ascorbic acid. In the reaction
with acrolein (Scheme 1) they obtained a single product
and determined it to be the monohydrate of an 1:1 adduct
of the aldehyde with the enole system of ascorbic acid. Af-
ter removal of the water of crystallization the X-ray crys-
tal-structure analysis clearly proved the formation of com-
pound 2. Since the 'H- and the "*C-nmr spectra of the
monohydrate and 2 were identical (Figures la and b),
Fodor assumed the same structure for both 1 and 2. In
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contrast, Eger and co-workers [5] were able to show that
the monohydrate in fact was the tricyclic furanoid spiro
compound 1, which underwent rearrangement to the
pyranoid 2 during the azeotropic distillation. Compounds
1 and 2 are transformed into one another in a complex
solvent- and time-dependent equilibrium, in which 1 pre-

dominateés (Scheme 2). The transformation of 2 into 1
could be monitored by time-dependent 'H-nmr spec-
troscopy [6], but due to overlapping signals in the ‘H-nmr
spectra the interpretation was not straightforward. Due to
the long data acquisition time no difference between the
two isomers, 1 and 2, can be seen in the "*C-nmr spectra
(Figures la and b). The broadband decoupled spectra in-
dicate a structural rearrangement in solution only by the
appearance of ‘"doublet signals’. Fodor et al. interpreted
the doublet signals as an indication of the mutarotational
equilibrium between «-2 and -2 via the open chain alde-
hyde (Scheme 2).
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We are now able to show that an unambiguous and
solvent-independent characterization of both isomers can
be achieved by **C-nmr spectroscopy in the solid state [7].
During the rearrangement (1 = 2) the positions b, ¢ and i
{Scheme 3) change their structural environment, and this
should lead to obvious changes in the '*C-chemical shifts
for these atoms. Indeed, the transformation of the tertiary
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Scheme 3

alcoholic carbon atom 2-b into the spiro-ether 1-b pro-
duces a signal shift of 16 ppm downfield; while 2-b shows
resonance at 72 ppm the signal for 1-b appears at 88 ppm
(Table 1, Figures lc and d). The signal of the acetale car-
bon atom 2-i (95 ppm) is only slightly shifted downfield by
6 ppm to 101 ppm in 1-i, whereas 2-c and 1-¢ respectively
are not influenced at all; they both show resonance at 107
ppm. The structural assignments from the *C-solid state
nmr spectra allow to a certain extend an interpretation of
the *C.nmr spectra of 1 and 2 in [D6]-DMSO solution
(Figures la and b). In both spectra only the resonances of
1 give major peaks, both spectra are exactly identical. The
minor resonances belong to 2 and the open chain isomers.

Table 1. Chemical shifts of 1 and 2 in the solid state and in solution

Atom- Solid state spectra Solutional spectrum ([D6]-DMSO)
index 1 2 mutarotated mixture

a 175.2 174.0 175.1

b 88.0 72.0 87.3 and 87.6

c 107.5 107.5 106.0 and 106.8

d 85.3 86.1 85.3

e 78.5 8.5 4.5

{ 73.1 74.7 73.8

g 28.4 29.5 29.4 and 29.9

h 32.3 29.5 323

i 101.2 94.9 100.0 and 99.7

The same problem of structural assignment was faced by
Eger et al. in the case of the Michael adduct of acrolein
and ascorbic acid palmitate [6]. In analogy to the reaction
given in Scheme 1 the adduct should exist in two isomeric
forms, 3 and 4 (Scheme 4). The authors found that the

Scheme 4
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'"H-nmr spectrum of the reaction product was in accor-
dance with structure 3. As a further proof for the ketone
moiety they prepared a dinitrophenylhydrazone deriva-
tive. New results now indicate that in absolute ethanol on-
ly 4 is formed. As shown above, solid state nmr spec-
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troscopy provides a useful means for an unambiguous
structure elucidation of the reaction product.
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The 3C-nmr solid state spectrum (Figure 2a) only shows
signals of one compound, which can be identified as the
pyranoid 4 by comparing the chemical shifts of carbon
atom 4-b (Scheme 4, Table 2) with those of 1-b and 2-b
(Scheme 3) in the solid state spectra given in Figures lc
and ld. In Figure 2a the signal of the tertiary alcoholic
carbon atom 4-b appears at 70 ppm (Table 2), which is
perfectly consistent with the resonance of 2-b at 72 ppm
(Table 1). Even more important, the signal of 4-¢ is shifted
upfield to 101 ppm (compared to 107 ppm in 1-¢ and 2-c¢),
while the resonance of 3-¢ would be expected to appear
above 200 ppm. Recording the *C-nmr spectrum at 62.5
and 20 MHz yields an indication for a possible rearrange-
ment of 4 into 3 in [D6}DMSO solution. The spectrum
taken at 62.5 MHz (50 mg, 6000 scans) is very similar to
the solid state spectrum (Figures 2a and b). Apart from a
few minor peaks it contains only the structural informa-

tion of 4. Measured at 20 MHz (50 mg, 12000 scans), the

Table 2. Chemical shifts of 4 in the solid state and in solution

Heterocyclic Products in Michael Reactions of Ascorbic Acid

Atom- | Solid state spectrum Spectrum in {D6]-DMSO solution
index 4 4 (62.5 MHz) 3/4 (20 MHz)
a 175.3 175.6 174.9
b 69.5 69.9 789 and 69.9
c 101.3 101.4 207.2 and 101.4
d 85.8 84.1 82.4, 83.0 and 84.1
e 68.0 65.6 66.8 and 65.5
f 65.4 64.1 and 65.1 62.7 and 63.2
g 26.1 22.1 221
h 251 25.7 244 and 254
1 99.6 95.6 99.3 and 95.6
k 174.4 172.7 172.6
1 33.6 27.3 - 33.4 (m) 27.4 - 34.0 (m)
m 14.7 13.9 and 15.0 13.8 and 14.9
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spectrum shows signals of both compounds 3 and 4
(Figure 2c). We identify the ketone resonance of 3-c at 207
ppm, and the signal of 3-b is shifted downfield to the ex-
pected value of a spiro ether, 79 ppm, whereas 4-b shows
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resonance at expected value of a spiro ether, 79 ppm,
whereas 4-b shows resonance at 70 ppm. In addition to the

nmr results we repeated the above mentioned formation of
a dinitrophenylhydrazone. We now believe the assumed
structure 5 (Scheme 5), published in [6], was not formed
under our experimental conditions. Instead, we obtain 6,
which is confirmed by spectral evidence.

Scheme 5
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The 'H-nmr spectrum of 6 shows two N-H signals and
two sets of coupling paths for a dinitrophenylhydrazone
group. Further confirmation comes from the *C-nmr spec-
trum (in solution), mass spectrum and elemental micro-
analysis.

EXPERIMENTAL

Apparatus.

Melting points were determined on a Biichi 510 melting point
apparatus, and are uncorrected. The ir spectra (potassium bro-
mide) were recorded on a Perkin Elmer 1710 FTIR spectrometer.
The 'H and **C-nmr spectra in solution were measured on a Bru-
ker AC 200 spectrometer using tetramethylsilane as an internal
standard, the spectrum of 3 was taken on a Bruker AC 80. For the
resonance signals the following abbreviations are used: s, singlet;
d, doublet; dd, doublet of doublets; t, triplet; m, multiplet. The
structural assignment derived from the **C-nmr spectra in solu-
tion was confirmed by the DEPT135 sequence and by literature
data. Solid state '*C magic-angle-spinning (MAS) spectra were ob-
tained on a Bruker MSL 200 NMR spectrometer at 4.7 T. Quanti-
ties of 200-300 mg of powdered samples were packed into double
bearing rotors of zirconium oxide which were spun at 3.6 kHz by
a dry air gas drive. Solid state nmr experiments were performed
by combination of Magic Angle Spinning (MAS), cross polariza-
tion (CP) and high power decoupling in order to obtain high reso-
lution spectra [7,8]. The Hartmann-Hahn conditions for cross po-
larization was calibrated with glycine. Typically, CP/MAS spectra
were recorded with a pulse length of 5 ps, a contact time of 1 ms,
and a repetition time of 2 s. Chemical shifts were externally refer-
enced to liquid tetramethylsilane. The mass spectrum was ob-
tained by the Field Desorption method (FD) on a Finnigen MAT
711A spectrometer {modified by AMD Intectra GmbH) using a
direct inlet system. It was recorded by the department Massen-
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spektrometrie, Organisch-Chemisches Institut der Universitit
Tiibingen. Elemental analysis was performed by the department
Elementaranalyse, Anorganisch-Chemisches Institut der Univer-
sitdt Tiibingen.

Synthesis of {(S)}-2{(2R)-342,4-Dinitrophenylhydrazono)-4{3-(24-
dinitrophenylhydrazono)propyl}-4-hydroxy-5-oxo-2-furyl]-2-hydro-
xyethyl} Hexadecanoate (6).

2,4-Dinitrophenylhydrazine (0.4 g, 2 mmoles) was dissolved in
2 ml of concentrated sulphuric acid. The stirred mixture was
carefully diluted with 3 ml of distilled water. To the warm solu-
tion 10 ml of ethanol were added. A suspension of 0.5 g (1 mmole)
of 4 in 20 ml of ethanol was added to the stirred solution. The im-
mediately formed precipitation was allowed to continue crystalli-
zation at 4° overnight. The amorphous mass was separated from
the solution by suction and recrystallized from methanol. A dark
red amorphous powder, yield 0.45 g (54%), mp 124° was ob-
tained; ir (potassium bromide): » 2925, 2853 (C-H, N-H), 1794,
1738 (lactone, ester), 1619, 1599, 1519, 1507, 1426, 1339, 1141,
923, 834, 764; ms: (m/z) 831.0 (M*); 'H-nmr ( [D6}DMSO, 250
MHz): 6 (ppm) 1.20 and 1.55 (m, 31 H, fatty acid chain), 2.35 (m, 4
H, -CH,-CH,), 4.16 (m, 2 H, CHOH-CH,-OR), 4.28 (m, 1 H,
CHOH-CH,OR), 544 (d, J = 1.8 Hz, 1 H, N=CR-CHOR-
CHOH-), 7.67 and 7.76 (2x d, Js¢ = 9.6 Hz, 2x 1 H,
phenyl-H-6"), 7.94 (1, ] = 4.7 Hz, 2x 1 H, CH=N-N), 8.18 (dd,
Jss¢ = 9.6 Hz, Js 3 = 2.7 Hz, 1 H, phenyl-H-5"), 8.26 (dd, J5.¢ =
9.6 Hz, J5. 5 = 2.6 Hz, 1 H, phenyl-H-5"),8.77(d, J35 = 2.4 Hz, ]
H, phenyl-H-3"), 8.78 (d, J3.5 = 2.0 Hz, 1 H, phenyl-H-3), 12.10
and 12.59 (s, 2x 1H, NH); *C-nmr ([D6}DMSO, 62.5 MHz): 6
(ppm) 13.8 (CH,, fatty acid), 22.1, 24.4, 26.6, 28.6, 28.8, 29.1, 31.3,
32.4 and 33.4 (CH,, fatty acid and propyl side chain), 64.0

(CHOH-CH,-0OR), 67.4 (CHOH-CH,0R), 74.9 (CH,- CROH-CO),
78.3 (CO-OCR-CHOH), 115.7 and 116.1 (phenyl-C-6"), 122.7
(phenyl-C-3"), 128.6 and 129.6 (phenyl-C-5"), 136.5 (phenyl-C-2',
137.5 (phenyl-C-4'), 144.0 and 144.4 (phenyl-C-1'), 152.5
(CH=N-N), 153.0 (R, C=N-N), 172.7 and 173.6 (C=0, lactone
and ester).

Anal. Caled. for C,,;H,,N,0,, (830.83): C, 53.48; H, 6.07; N,
13.49; 0, 26.96. Found: C, 53.32; H, 6.26; N, 13.20; 0, 27.22.
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